
Sneaking Scala
Into the Enterprise

@davetron5000 / dave @ opower.com

A (Java Developer's) Tour of Scala - naildrivin5.com/scalatour

naildrivin5.com/blog

Slides on Github github.com/davetron5000/sneaking-scala

Slides online sneaking-scala.heroku.com

Sneaking Scala
Into the Enterprise

Why?

Barriers

Solutions

Engineering Lead @

15 years professional developer

10+ years of Java

Built many apps like this:

(Where I work)

Software as a Service

Java Shop

We actually Make Money

We are married only to what
works

How could Scala work for your
company?

or, Why do we care in the first place?

Get more done

More expressive

Fewer lines of code

More productive

Fewer bugs?

Talent attractor

Natural progression on the
JVM

Natural progression on the
JVM

What's in the way?

Steep learning curve

New Syntax

Many new concepts

Docs, books, community all in early stages

Where do I even find a Scala
developer?

 http://langpop.com/

Java's delivering

How do we make this happen?

Fight the learning curve

Sneak it in

Control Risk

History Lesson C++ to Java

Replace existing apps/write new ones

New libraries

New deployment mechanism

Java to Scala

Replace components

Reuse libraries

Same deployment mechanism

Java to Scala

Don't need to abandon Java

Don't need the entire Scala
language (or library) to get

started

Getting started carries less risk

Is this realistic?

And does this actually provide value?

Business Logic

Fully Armed and Operational Programming
Language

http://www.flickr.com/photos/flying_cloud/2667225198

Hard to control Learning Curve
class PersonService {
 this: PersonDAO with UtilityDAO =>

 def login(name:String, password:String) = {
 if (checkPassword(name,password))
 val token = recordLogin(name)
 Some(token)
 else
 None
 }
}

Hard to control Learning Curve
class PersonService {
 this: PersonDAO with UtilityDAO =>
//^^^^^ What is this even called?!^^^
 def login(name:String, password:String) = {
 if (checkPassword(name,password))
 val token = recordLogin(name)
 Some(token)
 else
 None
 }
}

High Risk

(though arguably high value)

A win in the long term

Productivity, Maintainability, Learnability hits in
the short term

Requires on-site or in-house experts (expensive)

Model/Persistence Layer

Model Objects
public class Person {
 private String firstName;
 private String lastName;
 private Date birthdate;
 private char gender;
 private String email;
 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }
 public String getLastName() {
 return lastName;
 }
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
 public Date getBirthdate() {
 return birthdate;
 }
 public void setBirthdate(Date birthdate) {
 this.birthdate = birthdate;
 }
 public char getGender() {
 return gender;

Model Objects
class Person(
 var firstName:String,
 var lastName:String,
 var birthdate:Date,
 var gender:Char,
 var email:String)

Model Objects
case class Person(
 @BeanProperty var firstName:String,
 @BeanProperty var lastName:String,
 @BeanProperty var birthdate:Date,
 @BeanProperty var gender:Char,
 @BeanProperty var email:String)

Low Risk, High Value

Very little Scala Knowledge

HUGE reduction in code size

Two Problems

Already have a ton

Not a significant source of
bugs

What about application
endpoints?

DaveWeb5000 Controller
public class TipController {

 public Object getTip() {
 String id = params.get("id");
 String format = params.get("format");
 Tip tip = tipService.find(id);
 return formatAs(format,tip);
 }
}

Scala-ized version
class TipController {

 def getTip = {
 val id = params("id");
 val format = params("format");
 val tip = tipService.find(id);
 formatAs(format,tip);
 }
}

"Power of Scala" has little to
add

Low Risk, Low Value

All is lost?

Testing!

No new deployment
dependencies

Can focus on your problem
domain

Tests have a lot of boilerplate

Scala makes boilerplate go
away

What OPOWER did

Web Testing

Web Testing

New Concept for team

Key to success of product

New API to learn for everyone

Can we sneak in Scala?

(and add value :)

HTMLUnit/JWebUnit is like assembly
language

public void testLogin {
 tester = new WebTester();
 tester.gotoURL(HOME_PAGE);
 tester.gotoURL(PROTECTED_PAGE);
 tester.assertOnForm("login");
 tester.setValue("user","dave@blah.com");
 tester.setValue("pass","foobar69");
 tester.submit();
 tester.assertOn(PROTECTED_PAGE);
 // Real tests much longer and
 // more painful
}

DSL for web testing our app
class WebTestLogin extends WebTestSpec {
 page("protected",
 (page:PageSpecification) => {

 page.requiresLogin()
 page.shouldContain(
 "Hello Dave").inElement("h1")
 })
}

Smooth the learning curve

Ground Rules for DSL

Consistent syntax

No new operators

Minimize new concepts

How many new concepts?
class WebTestLogin extends WebTestSpec {
 page("protected", // *1*
 (page:PageSpecification) => { // *2,3*

 page.requiresLogin()
 page.shouldContain(
 "Hello Dave").inElement("h1")
 })
}

[1] Basic Syntax - constructor
code

class WebTestLogin extends WebTestSpec {
 page("protected", // *1* ...

[2] types come after a :
class WebTestLogin extends WebTestSpec {
 page("protected", // *1*
 (page:PageSpecification) => { // *2*

[3] Anonymous
functions/closures

class WebTestLogin extends WebTestSpec {
 page("protected",
 (page:PageSpecification) => { // *3*
 ^^^^param ^^^^function

Reinforces familiar concepts

Dots - x.y == method call - easy to understand

page - has an obvious type, we can look up its
methods

Ground Rules for Implementation

Had a weekend to build it

Mixins, Case Classes, Collections All fair game

Imperative/OO design

Ground Rules for Implementation

Avoid (initially) confusing features

No implicits

Minimize type parameters

Ground Rules for Implementation

Tutorial, scaffolds, documentation

Lots of scaladoc

"How" and "What" Comments

Couldn't this have been done
in Java?

Certainly, but...

DSL implementation would've
taken too long in Java

Conclusions

Scala can provide value to your
organization

A gradual introduction
minimizes risk, maximizes

value

Testing is an easy win

Tame the learning curve

Small successes socialize its
value

Gradually expand

Thank You
@davetron5000 / dave @ opower.com

Slides on Github github.com/davetron5000/sneaking-scala

Slides online sneaking-scala.heroku.com

 Sneaking Scala Into The Enterprise by David Copeland is licensed
under a Creative Commons Attribution-Noncommercial-Share Alike 3.0

United States License. Based on a work at www.github.com.

