

The Scala IDE for Eclipse
 Retrospect and Prospect for 2.8 and Beyond

Miles Sabin, Chuusai Ltd.
http://www.chuusai.com/

http://uk.linkedin.com/in/milessabin
http://twitter.com/milessabin

http://www.chuusai.com/

Outline

● History
● Current Work
● Demo
● A Call to Action!

History

● Started early in Scala's timeline (early 2005)
● Very simple IDE plugin
● Little functionality beyond basic syntax

highlighting and build invocation
● Written in Java
● There was a least one other similar offering

at the time: Scaliptor

History 1

History 2

● Announced December 2005, first release
February 2006 (2.1.0)

● Rewritten in Scala
● Some semantic features acquired (eg.

limited auto-completion)
● Even at this early stage requests for the

ability to mix Java and Scala and JDT
interop were coming in

History 3

● Announced June 2007, first release
February 2008

● Attempted much deeper integration with
the Scala compiler,
● Interactive error reporting
● Semantic highlighting
● Incremental compilation
● Dependency management

● Many hooks added to scalac

History 4

● Start of my involvement (May 2008)
● Prompted by very generous sponsorship by

EDF Trading
● Primary goals

● Ease Java/Scala migation
– Mixed Scala/Java compilation in scalac
– Mixed Scala/Java projects in Eclipse

● Improved Eclipse stability and release process

History 4

● First commit to trunk in July 2008
● Results of the work first visible in

2.7.2.RC1 in August 2008
● Final 2.7.2 release in November
● Goals somewhat met,

● Mixed Scala/Java enabled in scalac and Eclipse
● Release process dramatically improved
● However JDT integration limited and stability

issues remain

History 5

● Serious roadblocks to JDT integration
● 2.7.3 contained only very minor bugfixes

and enhancements
● Long standing patch to open up the JDT for

extension updated but rejected
● AspectJ and Equinox Aspects provided a

Plan B

History 5

● JDT Roadblocks removed enabling rapid
progress,
● Many bugs fixed
● Many features enhanced

● First appeared in 2.7.4 in April 2009
● Some drawbacks however,

● Some installation issues
● Some JDT features magically started to almost

work

History 6

● Solution to preceeding: full speed ahead on
JDT integration, recruit contributors

● However, much of the codebase complex
over-abstracted and forbidding
● Learning curve too steep for casual contribs
● Fragility in presentation compiler

– Spurious pink squigglies, minor errors destroy all
highlighting, unreliable dependency management

● Negative effect on scalac
– Many fragile “if (inIDE) ...” blocks

History 6

● Complete reimplementation of all semantic
and build related features

● Work done in collaboration with Martin
Odersky and Iulian Dragos at EPFL in May
last year

History 6

● New interactive compiler
● Completely replaces old presentation compiler
● Now the unit of (re)compilation is a whole

source file.
– Performance is on a par if not better than before,

old approach a “premature optimization”
● All “inIDE” conditions removed from scalac
● Accurate position information to AST nodes

– Enables new features (folding)
– Supports new tools (refactoring, formatting)

● New incremental build manager
● Far more reliable than previous Eclipse-

specific code
● Makes use of scalac's filesystem

abstraction enabling,
● Use by other IDEs
● Use by other tools

● Supports all JDT build path features
● Multiple source and output directories

History 6

History 6

● Hubert Plociniczak at EPFL now maintaining
the build manager

● Many useful contributions from Mark
Harrah

History 6

● Drawbacks
● Big bang ... there's no going back,

– All support for previous integration has been
removed from scalac

– All semantic features in Eclipse had to be reworked
– No feasible backport of new features or bugfixes to

2.7.x branch
● This is in stark contrast to the incremental

improvement policy I had intended to adopt
from 2.7.2 onwards.

Current Work

Current Work

● Hyperlink navigation (“Jump to definition”)
close to completion
● Completely new implementation based on the

JDT's mechanisms
● Scala source code selections mapped to Scala

AST nodes and Eclipse JDT model handles
● Some “re-sugaring” required to map AST nodes

to appropriate JDT construct
● Supports “Jump to implementation” is many

cases

Current Work

● The underlying mechanism supports
additional JDT features,
● Javadoc hovers
● Source hovers
● Java model search (eg. find references, find

annotations)

Current Work

● Reusing the JDTs navigation required the
extension of AST mapping to binaries (eg.
class files in the Scala standard library Jars)
● Currently only supported for binaries with

source attachments
● This provides dramatic improvement in

navigability for the standard library
● Library components now open in Scala editor
● Outline view and outlines in package explorer

now available

Current Work

● The full mapping of Scala source and
binary components enables comprehensive
JDT-wide indexing of Scala elements
● The JDT indexer now understands Scala traits

and objects
● Indexing supports uniform “Open Type”

behaviour across Scala and Java projects
● Supports “Find references” to both Scala & Java

in both Scala & Java sources
– Still work in progress, but already useful

Current Work

● The new presentation compiler is much
more reliable
● No longer used for syntax highlighting, so

doesn't have to run synchronous with
keystrokes and whole CU update is fast enough

● Currently supports,
● Error reporting as-you-type
● Live outline update in the outline view and the

package explorer
● Code completion

Current Work

● New and very valuable collaborations
● Formation of a "JDT hackers" group

– understandably cautious support from the JDT team
● Work with Sonatype on Scala support in

m2eclipse
● Integration with Eclipse PDE build tools in 3.6
● Mirko Stocker's Scala refactoring project
● Matt Russell's Scalariform formatter

Demo

Who uses an IDE?

Who uses an IDE for Scala?

Who Uses Eclipse?

Who uses Eclipse for Scala?

A Call to Action!

A Call to Action!

● It's essential to lower the barrier to
contribution

● The codebase has been made much less
forbidding

● But infrastructure, build, documentation,
reporting, communication need more work

A Call to Action!

http://www.scala-ide.org/

A Call to Action!

Git!
(at http://scala-ide.assembla.com/)

A Call to Action!

Tycho/Maven 3.0!!

Participate!

● The Scala IDE for Eclipse's home
http://www.scala-ide.org/

● Wiki, git repository, bugs
http://scala-ide.assembla.com/

● Mailing lists
http://groups.google.com/group/scala-ide-user
http://groups.google.com/group/scala-ide-dev

● Follow @ScalaIDE on Twitter

http://www.scala-ide.org/
http://scala-ide.assembla.com/
http://groups.google.com/group/scala-ide-user
http://groups.google.com/group/scala-ide-dev

The Scala IDE for Eclipse
 Retrospect and Prospect for 2.8 and Beyond

Miles Sabin, Chuusai Ltd.
http://www.chuusai.com/

http://uk.linkedin.com/in/milessabin
http://twitter.com/milessabin

http://www.chuusai.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

