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History



  

● Started early in Scala's timeline (early 2005)
● Very simple IDE plugin
● Little functionality beyond basic syntax 

highlighting and build invocation
● Written in Java
● There was a least one other similar offering 

at the time: Scaliptor

History 1



  

History 2

● Announced December 2005, first release 
February 2006 (2.1.0)

● Rewritten in Scala
● Some semantic features acquired (eg. 

limited auto-completion)
● Even at this early stage requests for the 

ability to mix Java and Scala and JDT 
interop were coming in



  

History 3

● Announced June 2007, first release 
February 2008

● Attempted much deeper integration with 
the Scala compiler,
● Interactive error reporting
● Semantic highlighting
● Incremental compilation
● Dependency management

● Many hooks added to scalac



  

History 4

● Start of my involvement (May 2008)
● Prompted by very generous sponsorship by 

EDF Trading
● Primary goals

● Ease Java/Scala migation
– Mixed Scala/Java compilation in scalac
– Mixed Scala/Java projects in Eclipse

● Improved Eclipse stability and release process



  

History 4

● First commit to trunk in July 2008
● Results of the work first visible in 

2.7.2.RC1 in August 2008
● Final 2.7.2 release in November
● Goals somewhat met,

● Mixed Scala/Java enabled in scalac and Eclipse
● Release process dramatically improved
● However JDT integration limited and stability 

issues remain



  

History 5

● Serious roadblocks to JDT integration
● 2.7.3 contained only very minor bugfixes 

and enhancements
● Long standing patch to open up the JDT for 

extension updated but rejected
● AspectJ and Equinox Aspects provided a 

Plan B



  

History 5

● JDT Roadblocks removed enabling rapid 
progress,
● Many bugs fixed
● Many features enhanced

● First appeared in 2.7.4 in April 2009
● Some drawbacks however,

● Some installation issues
● Some JDT features magically started to almost 

work



  

History 6

● Solution to preceeding: full speed ahead on 
JDT integration, recruit contributors

● However, much of the codebase complex 
over-abstracted and forbidding
● Learning curve too steep for casual contribs
● Fragility in presentation compiler

– Spurious pink squigglies, minor errors destroy all 
highlighting, unreliable dependency management

● Negative effect on scalac
– Many fragile “if (inIDE) ...” blocks



  

History 6

● Complete reimplementation of all semantic 
and build related features

● Work done in collaboration with Martin 
Odersky and Iulian Dragos at EPFL in May 
last year



  

History 6

● New interactive compiler
● Completely replaces old presentation compiler
● Now the unit of (re)compilation is a whole 

source file.
– Performance is on a par if not better than before, 

old approach a “premature optimization”
● All “inIDE” conditions removed from scalac
● Accurate position information to AST nodes

– Enables new features (folding)
– Supports new tools (refactoring, formatting)



  

● New incremental build manager
● Far more reliable than previous Eclipse-

specific code
● Makes use of scalac's filesystem 

abstraction enabling,
● Use by other IDEs
● Use by other tools

● Supports all JDT build path features
● Multiple source and output directories

History 6



  

History 6

● Hubert Plociniczak at EPFL now maintaining 
the build manager

● Many useful contributions from Mark 
Harrah



  

History 6

● Drawbacks
● Big bang ... there's no going back,

– All support for previous integration has been 
removed from scalac

– All semantic features in Eclipse had to be reworked
– No feasible backport of new features or bugfixes to 

2.7.x branch
● This is in stark contrast to the incremental 

improvement policy I had intended to adopt 
from 2.7.2 onwards.
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Current Work

● Hyperlink navigation (“Jump to definition”) 
close to completion
● Completely new implementation based on the 

JDT's mechanisms
● Scala source code selections mapped to Scala 

AST nodes and Eclipse JDT model handles
● Some “re-sugaring” required to map AST nodes 

to appropriate JDT construct
● Supports “Jump to implementation” is many 

cases



  

Current Work

● The underlying mechanism supports 
additional JDT features,
● Javadoc hovers
● Source hovers
● Java model search (eg. find references, find 

annotations)



  

Current Work

● Reusing the JDTs navigation required the 
extension of AST mapping to binaries (eg. 
class files in the Scala standard library Jars)
● Currently only supported for binaries with 

source attachments
● This provides dramatic improvement in 

navigability for the standard library
● Library components now open in Scala editor
● Outline view and outlines in package explorer 

now available



  

Current Work

● The full mapping of Scala source and 
binary components enables comprehensive 
JDT-wide indexing of Scala elements
● The JDT indexer now understands Scala traits 

and objects
● Indexing supports uniform “Open Type” 

behaviour across Scala and Java projects
● Supports “Find references” to both Scala & Java 

in both Scala & Java sources
– Still work in progress, but already useful



  

Current Work

● The new presentation compiler is much 
more reliable
● No longer used for syntax highlighting, so 

doesn't have to run synchronous with 
keystrokes and whole CU update is fast enough

● Currently supports,
● Error reporting as-you-type
● Live outline update in the outline view and the 

package explorer
● Code completion



  

Current Work

● New and very valuable collaborations
● Formation of a "JDT hackers" group

– understandably cautious support from the JDT team
● Work with Sonatype on Scala support in 

m2eclipse
● Integration with Eclipse PDE build tools in 3.6
● Mirko Stocker's Scala refactoring project
● Matt Russell's Scalariform formatter



  

Demo



  

Who uses an IDE?



  

Who uses an IDE for Scala?



  

Who Uses Eclipse?



  

Who uses Eclipse for Scala?



  

A Call to Action!



  

A Call to Action!

● It's essential to lower the barrier to 
contribution

● The codebase has been made much less 
forbidding

● But infrastructure, build, documentation, 
reporting, communication need more work



  

A Call to Action!

http://www.scala-ide.org/



  

A Call to Action!

Git!
(at http://scala-ide.assembla.com/)



  

A Call to Action!

Tycho/Maven 3.0!!



  

Participate!

● The Scala IDE for Eclipse's home
http://www.scala-ide.org/

● Wiki, git repository, bugs
http://scala-ide.assembla.com/

● Mailing lists
http://groups.google.com/group/scala-ide-user
http://groups.google.com/group/scala-ide-dev

● Follow @ScalaIDE on Twitter

http://www.scala-ide.org/
http://scala-ide.assembla.com/
http://groups.google.com/group/scala-ide-user
http://groups.google.com/group/scala-ide-dev
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