
Processing with Spde

www.princexml.com
Prince - Personal Edition
This document was created with Prince, a great way of getting web content onto paper.

What is Processing?

Processing is a programming language, development
environment, and online community that since 2001 has
promoted software literacy within the visual arts.

— processing.org

The Programming Language
P5

Java 1.4 with some syntax sugar

Not evoloving

The Development Environment
The PDE

Very simplified IDE

1-click run, applet export

No syntax completion

Not extensible

And yet...

Processing is used with great
success in many fields.

Education and Design
NYU's ITP program shows student projects at Big Screens

Urban Planning

Political Analysis
The corpus of all the State of the Union addresses from 1790
to 2006, visualized

Art
Experimental organic interface allows people to control a
computer while playing in the mud

Through an API built with Processing, artists and designers
develop mud-controlled games, physics simulations, and
expressive tools.

And Industry
Flocking behavior used in television spots for FOX Japan

Where does Scala fit in?

Its usual benefits over Java
Type inference

Greater expressivity

Access to functional programming

... all without sacrificing compatibility with the
wealth of Java and JNI libraries built for Processing.

But the PDE isn't flexible enough to support other
languages.

(I tried that.)

Fortunately there is Simple Build Tool.

The sbde-sbt plugin

An sbt plugin may
Preprocess sources

Obtain dependencies

Run programs

Export applets

Or anything else, really

Plugins are an ecosystem
Projects can use multiple plugins

Projects and plugins can spin off more plugins

No user-interface code, no cry

People may choose their own IDE poison

Learning Scala with Spde

"Spde" is like "Processing"—it's the project,
libraries, and environment. Loosely speaking.

Plotting functions
In Processing you work with pixels directly, but

these can also be abstracted away.

size(500, 500)
def squared = points(-50, 50) { x => x * x }
def draw {

lineplot(squared)
}

size(500, 500)
def slope = points(-250, 250) {

x => ((mouseY * 2.0 / height) * x)
}
def draw {

background(128)
lineplot(slope)

}

size(500, 500)
def sliding_sine = points(0, 10) {

x => sin(x * mouseX * 5 / width)
} map {

case (x, y) => (x, y * mouseY * 250 / height)
}
def draw {

background(128)
lineplot(sliding_sine)

}

val d= 200
size(400, 400)
background(255)
val a=List(List(d/2,0,255,0,0),List(d,d,0,255,0),List(0,d,0,0,255))
var p=List(d,0,255,0,0)
def draw() {

for(i<-1 to 10) {
p=p zip a.random map{case (x,y)=>x/2+y}
stroke(p(2),p(3),p(4))
point(p(0), p(1))

}
}

size(500, 200)
frameRate(20)
val items = { 0 to width }.view.map { (_, random(255).toInt) }

def draw {
for ((x, color) <- items) {

stroke(color)
line (x, 0, x, height)

}
}

size(465, 190)
frameRate(25)

def random_seq = (0 until width) map { (_, random(height)) }
var h: Seq[(Int, Float)] = random_seq
override def mouseClicked { h = random_seq }

def draw() {
background(255)
h foreach { case (x, h) => line(x, 0, x, h) }
h = (h :\ List[(Int, Float)]()) {

case ((x1, h1), Nil) => (x1, h1) :: Nil
case ((x1, h1), (x2, h2) :: t) =>

(x1, (h1 + h2) /2) :: (x2, h2) :: t
}

}

import scala.util.continuations._
size(500, 200)
frameRate(15)
var cur: Unit => Unit = { (u: Unit) =>

reset {
var x = 0
while(true) {

x = (x + 1) % width
background(255)
color(0)
line(width - x, 0, x, height)
shift { k: (Unit => Unit) => cur = k }

}
}

}
def draw() { cur() }

And you can translate neat Processing sketches

size(640, 360, P3D)
val rSize = width / 6 // rectangle size
noStroke()
fill(204, 204)
var a = 0.0
def draw() {

background(0)
a = (a + 0.005) % TWO_PI
translate(width/2, height/2)
rotateX(a)
rotateY(a * 2.0)
rect(-rSize, -rSize, rSize*2, rSize*2)
rotateX(a * 1.001)
rotateY(a * 2.002)

var index=0
def index_++ = {

index += 1
index - 1

}

for (int i=0;i<cuantos;i++){
lista[i].dibujar();

}
lista foreach { _.dibujar() }

And one more thing...

Android

Spde needs YOU

I've got the tools under control, but...

Spde could use more
Exemplary sketches in spde-examples

Full-fledged, world-changing projects

Serious attempts at writing a core library

THANK YOU
http://technically.us/spde

	Processing with Spde
	What is Processing?
	The Programming Language
	The Development Environment
	And yet...
	Processing is used with great success in many fields.
	Education and Design
	Urban Planning
	Political Analysis
	Art
	And Industry
	Where does Scala fit in?
	Its usual benefits over Java
	... all without sacrificing compatibility with the wealth of Java and JNI libraries built for Processing.
	But the PDE isn't flexible enough to support other languages.
	(I tried that.)
	Fortunately there is Simple Build Tool.

	The sbde-sbt plugin
	An sbt plugin may
	Plugins are an ecosystem
	Learning Scala with Spde
	"Spde" is like "Processing"—it's the project, libraries, and environment. Loosely speaking.

	Plotting functions
	In Processing you work with pixels directly, but these can also be abstracted away.
	And you can translate neat Processing sketches

	And one more thing...
	Spde needs YOU
	I've got the tools under control, but...

	Spde could use more
	THANK YOU

