Building without the
closed-world assumption

Integrating enterprise build artifacts using Scala

Christos KK Loverdos

loverdos@gmail.com
twitter.com/loverdos
ckkloverdos.com

Who Am 1I7?

@ Research-inclined software engineer

® Member of the core team the led the
software design & implementation of
www.athens2004.com

@ Co-author of forthcoming “Steps in Scala”

® Ex Java enthousiast

http://www.athens2004.com
http://www.athens2004.com

What this talk is about

® Vendor lock-in frustration

@ Using Scala to a pragmatic problem and
showing how it was done

@ Build artifacts as independent, first-class
citizens

@ Seeking and proving added value as a means
to convince managers/the boss

Closed-world
assumption?

Closed-world
assump

Closed-world

@ http://en.wikipedia.org/wiki/
Closed_world_assumption

@ what is not currently known to be true, is
false

http://en.wikipedia.org/wiki/Closed_world_assumption
http://en.wikipedia.org/wiki/Closed_world_assumption
http://en.wikipedia.org/wiki/Closed_world_assumption
http://en.wikipedia.org/wiki/Closed_world_assumption

Closed-world assumption
enterprise life

@ Vendor lock-in

@ "what is not controlled by Vendor does not
take the proper treatment” - if any

The setting

General

@ Brand-new J2EE project
@ First major use of Java > 1.4 for customer
@ New set of tools

@ IDE that promise the best prografnming
experience

@ Junior developers team

@ Enthusiasm but lack of experience

The setting

@ Fancy IDE but just for the unexperienced

@ Easy to work with Vendor extensions but not
with standards-compliant components

@ One-click-away software generation not very
helpful in educating the younger

The setting

Droblems confinuec

@ Built-in support for other tools outdated
@ Could not install latest maven plugin
@ Exported ant scripts meant to be untouched

® We had the core framework developed using
maven

@ Exported maven scripts looked like a mess

Preliminary thoughts

® One-click semantics considered harmful

@ Desperately need some automated build
system

@ Build artifacts must be integrated

@ Break away from Vendor lock-in

Vendor lock-in is bad

@ Having no alfernatives can be catastrophic
@ Can do harm to standards adoption
@ Reduces creativity

D ...

L

Y L TR 1:‘._'_

Es

i

b |
-

-y

iy

Why Scala?

@ Convince managers that a better tool was
necessary

@ Productivity boost

@ Knowledge horizon expansion

Terminology & design

@ A build artifact is a file, generated by some
build procedure

@ A build component is something that needs
to be built

® EJB, Web Service, Domain Model, ...

Terminology & design

@ Build components depend on one another
@ Nested build components

@ Just for one level in the initial impl.

Terminology & design

@ A builder type is a mechanism that drives a
build process

® ant, maven, vendor-ant, ...
® Default build actions

@ clean, compile, build, clean-build

Terminology & design

@ Automatic discovery of builder type
@ Predefined rules in the initial impl.

@ Easy to refactor to a strategy

Builder type discovery

def discoverBuilderType(place: RichFile): BuilderType = {

val antBuildXml = place / "build.xml"
val mvnPomXml = place / "pom.xmlL"
val vendorBuildXml = place / "vendor-build.xml"

1f(mvnPomXml.exists)
MavenBuilderType
else 1f(antBuildXml.exists)
1f(vendorBuildXml.exists)
VendorAntBuilderType
else
AntBuilderType
else
NoBuilderType

Terminology & design

@ Declarative properties per build component
@ generated-artifacts
@ depends-on
@ enable

@ Java-classpath

A few library goodies

@ RichFiles with better path handling

@ componentHome / “build.xml”

A few library goodies

@ Immutable FileSets
@ case class FileSet(files: List[RichFile])
@ ... with the ability to be filtered
@ def *(filter: NameFilter) =
. FileSet(files.filter(filter.accept(_.name)))

@ ... using glob patterns

A few library goodies

trait NameFilter {
def accept(name: String): Boolean

def |(other: NameFilter): NameFilter = ...

def unary_!: NameFilter = ...

¥

class GlobFilter(glob: String) extends NameFilter {
val globRE = globToRegexStr(glob)

def accept(name: String) = name.matches(globRE)
b

Universal Build & Deploy

1. Build Core Framework
2. Build other component
3 Calspeciffes dction
4. Show component types

5. Show auto build order
6. Build all [based on auto build order]
/. Make dependency graph [via graphviz]

| 8. Show generated artifacts |
| 9. Clean generated artifacts |

10. Deploy
11. Undeploy
12. Redeploy

Enter Choice:

Our Build Components

Core

WS/CallerWS
EJB/BusinessLogicEJB
EJB/LoggerEJ]B
EJB/SQLHandlerEJB
MDB/PhaserMDB
MDB/ReporterMDB

mvn
vhd-ant
ant
ant
ant
ant
ant

Automatic dependencies

FirsE & <> Core

Then => EJB/LoggerEJB

Then => MDB/PhaserMDB

Then => EJB/BusinesslLogicEJB
Then => EJB/SQLHandlerEJB
Then => EJB/ReporterE]B
Finally => WS/CallerWS

Last command was: 5. Show auto build order

Also graphically

EJB/ReporterEJB
EJB/SQLHandlerEJB MDB/PhaserMDB @

" EJB/LoggerEJB EJB/BusinessLogicEJB

...and clustered

Deployable artifacts

Generated: [2010-01-01 15:15:15] Core-1.1.jar

Generated: [2010-01-01 15:15:17] EJB/LoggerE]B. jar
Generated: [2010-01-01 15:15:20] MDB/PhaserMDB. jar
Generated: [2010-01-01 15:15:23] EJB/BusinesslLogicEIJB.jar
Generated: [2010-01-01 15:15:24] EJB/SQLHandlerEJB. jar
Generated: [2010-01-01 15:15:260] EJB/Reportertl]B. jar
Generated: [2010-01-01 15:15:39] WS/CallerWS.war

Last command was: 8. Show generated artifacts

..and how they are built

0OK] [2010-01-01 15:15:15] Core-1.1.jar for Core
0K] [2010-01-01 15:15:17] LoggerEIJB. jar for EJB/LoggerE]B
0K] [2010-01-01 15:15:20] PhaserMDB. jar for MDB/PhaserMDB

0K] [2010-01-01 15:15:23] BusinesslLogicEJB.jar for EJB/Business...
0K] [2010-01-01 15:15:24] SQLHandlerEJB. jar for EJB/SQLHandl...
0K] [2010-01-01 15:15:26] ReporterE]B. jar for EJB/ReporterkE]B
0OK] [2010-01-01 15:15:39] CallerWS.war for WS/CallerWS

