
Christos KK Loverdos
loverdos@gmail.com
twitter.com/loverdos

ckkloverdos.com

Building without the
closed-world assumption
Integrating enterprise build artifacts using Scala

Who Am I?

Research-inclined software engineer

Member of the core team the led the
software design & implementation of
www.athens2004.com

Co-author of forthcoming “Steps in Scala”

Ex Java enthousiast

http://www.athens2004.com
http://www.athens2004.com

What this talk is about

Vendor lock-in frustration

Using Scala to a pragmatic problem and
showing how it was done

Build artifacts as independent, first-class
citizens

Seeking and proving added value as a means
to convince managers/the boss

Closed-world
assumption?

Anyone?

Closed-world
assumption?

Anyone?

Closed-world
assumption?

http://en.wikipedia.org/wiki/
Closed_world_assumption

what is not currently known to be true, is
false

http://en.wikipedia.org/wiki/Closed_world_assumption
http://en.wikipedia.org/wiki/Closed_world_assumption
http://en.wikipedia.org/wiki/Closed_world_assumption
http://en.wikipedia.org/wiki/Closed_world_assumption

Closed-world assumption
enterprise life

Vendor lock-in

“what is not controlled by Vendor does not
take the proper treatment” - if any

The setting

Brand-new J2EE project

First major use of Java > 1.4 for customer

New set of tools

IDE that promise the best programming
experience

Junior developers team

Enthusiasm but lack of experience

General Facts

The setting

Fancy IDE but just for the unexperienced

Easy to work with Vendor extensions but not
with standards-compliant components

One-click-away software generation not very
helpful in educating the younger

Problems begin

The setting

Built-in support for other tools outdated

Could not install latest maven plugin

Exported ant scripts meant to be untouched

We had the core framework developed using
maven

Exported maven scripts looked like a mess

Problems continued

Preliminary thoughts

One-click semantics considered harmful

Desperately need some automated build
system

Build artifacts must be integrated

Break away from Vendor lock-in

Vendor lock-in is bad

Having no alternatives can be catastrophic

Can do harm to standards adoption

Reduces creativity

...

Answer to lock-in

Answer to lock-in

Sneak Scala in!

Why Scala?

Convince managers that a better tool was
necessary

Productivity boost

Knowledge horizon expansion

Terminology & design

A build artifact is a file, generated by some
build procedure

A build component is something that needs
to be built

EJB, Web Service, Domain Model, ...

Terminology & design

Build components depend on one another

Nested build components

Just for one level in the initial impl.

Terminology & design

A builder type is a mechanism that drives a
build process

ant, maven, vendor-ant, ...

Default build actions

clean, compile, build, clean-build

Terminology & design

Automatic discovery of builder type

Predefined rules in the initial impl.

Easy to refactor to a strategy

Builder type discovery
	 def discoverBuilderType(place: RichFile): BuilderType = {
	 	 val antBuildXml = place / "build.xml"
	 	 val mvnPomXml = place / "pom.xml"
	 	 val vendorBuildXml = place / "vendor-build.xml"

	 	 if(mvnPomXml.exists)
	 	 	 MavenBuilderType
	 	 else if(antBuildXml.exists)
	 	 	 if(vendorBuildXml.exists)
	 	 	 	 VendorAntBuilderType
	 	 else
	 	 	 	 AntBuilderType
	 	 else
	 	 	 NoBuilderType
	 }

Terminology & design

Declarative properties per build component

generated-artifacts

depends-on

enable

java-classpath

A few library goodies

RichFiles with better path handling

componentHome / “build.xml”

A few library goodies

Immutable FileSets

case class FileSet(files: List[RichFile])

... with the ability to be filtered

def *(filter: NameFilter) =

! FileSet(files.filter(filter.accept(_.name)))

... using glob patterns

A few library goodies
trait NameFilter {
	 def accept(name: String): Boolean

	 def |(other: NameFilter): NameFilter = ...

	 def unary_!: NameFilter = ...
}

class GlobFilter(glob: String) extends NameFilter {
	 val globRE = globToRegexStr(glob)

	 def accept(name: String) = name.matches(globRE)
}

Results

Here comes the fun part...

Universal Build & Deploy
+---+
| 1. Build Core Framework |
| 2. Build other component |
| 3. Call specific action |
| 4. Show component types |
+---+
| 5. Show auto build order |
| 6. Build all [based on auto build order] |
| 7. Make dependency graph [via graphviz] |
+---+
| 8. Show generated artifacts |
| 9. Clean generated artifacts |
+---+
| 10. Deploy |
| 11. Undeploy |
| 12. Redeploy |
+---+
| 13. Exit |
+---+
Enter Choice:

Our Build Components

[mvn] Core
[vnd-ant] WS/CallerWS
[ant] EJB/BusinessLogicEJB
[ant] EJB/LoggerEJB
[ant] EJB/SQLHandlerEJB
[ant] MDB/PhaserMDB
[ant] MDB/ReporterMDB

===
Last command was: 4. Show component types
===

Automatic dependencies

First => Core
 Then => EJB/LoggerEJB
 Then => MDB/PhaserMDB
 Then => EJB/BusinessLogicEJB
 Then => EJB/SQLHandlerEJB
 Then => EJB/ReporterEJB
Finally => WS/CallerWS

==
Last command was: 5. Show auto build order
==

Also graphically

...and clustered

Deployable artifacts

Generated: [2010-01-01 15:15:15] Core-1.1.jar
Generated: [2010-01-01 15:15:17] EJB/LoggerEJB.jar
Generated: [2010-01-01 15:15:20] MDB/PhaserMDB.jar
Generated: [2010-01-01 15:15:23] EJB/BusinessLogicEJB.jar
Generated: [2010-01-01 15:15:24] EJB/SQLHandlerEJB.jar
Generated: [2010-01-01 15:15:26] EJB/ReporterEJB.jar
Generated: [2010-01-01 15:15:39] WS/CallerWS.war

==
Last command was: 8. Show generated artifacts
==

...and how they are built

[OK] [2010-01-01 15:15:15] Core-1.1.jar for Core
[OK] [2010-01-01 15:15:17] LoggerEJB.jar for EJB/LoggerEJB
[OK] [2010-01-01 15:15:20] PhaserMDB.jar for MDB/PhaserMDB
[OK] [2010-01-01 15:15:23] BusinessLogicEJB.jar for EJB/Business...
[OK] [2010-01-01 15:15:24] SQLHandlerEJB.jar for EJB/SQLHandl...
[OK] [2010-01-01 15:15:26] ReporterEJB.jar for EJB/ReporterEJB
[OK] [2010-01-01 15:15:39] CallerWS.war for WS/CallerWS

===
Last command was: 6. Build all [based on auto build order]
===

Thank you!

