
Lightweight Domain-Specific Language Processing in Kiama, Anthony Sloane, GTTSE 2009 Tutorial

Anthony M. Sloane

Programming Languages Research Group
Department of Computing, Macquarie University
Sydney, Australia

Anthony.Sloane@mq.edu.au

Lightweight Language Processing in Kiama and Scala

Kiama was supported by The Netherlands NWO projects 638.001.610, MoDSE: Model-Driven
Software Evolution, 612.063.512, TFA: Transformations for Abstractions, and 040.11.001,
Combining Attribute Grammars and Term Rewriting for Programming Abstractions.

Lightweight Language Processing in Kiama and Scala, Anthony Sloane, Scala Days 2010 2

Kiama

Lightweight Language Processing in Kiama and Scala, Anthony Sloane, Scala Days 2010

Embedded Language Processing

Formalisms and associated implementation techniques for analysing,
translating and executing structured text.

Embedded as domain-specific languages in a general-purpose host
language.

context-free grammars
attribute grammars
term rewriting systems
abstract state machines

3

Lightweight Language Processing in Kiama and Scala, Anthony Sloane, Scala Days 2010

Attribute Grammars

4

Context-free grammar Case class definitions

Attribute Function defined on nodes

Equations Pattern matching function definition

Evaluation mechanism Function call, attribute caching

An equational formalism suited to specifying static properties of tree
and graph structures.

Lightweight Language Processing in Kiama and Scala, Anthony Sloane, Scala Days 2010

Variable Liveness

5

In Out
y = v {v, w} {v, w, y}
z = y {v, w, y} {v, w}
x = v {v, w} {v, w, x}
while (x) {v, w, x} {v, w, x}
{

 x = w {v, w} {v, w}
 x = v {v, w} {v, w, x}
}

return x {x} {}

Lightweight Language Processing in Kiama and Scala, Anthony Sloane, Scala Days 2010

Abstract syntax

 case class Program (body : Stm) extends Attributable

 abstract class Stm extends Attributable

 case class Assign (left : Var, right : Var) extends Stm
 case class While (cond : Var, body : Stm) extends Stm
 case class If (cond : Var, tru : Stm, fls : Stm) extends Stm
 case class Block (stms : List[Stm]) extends Stm
 case class Return (ret : Var) extends Stm
 case class Empty () extends Stm

 type Var = String

6

Lightweight Language Processing in Kiama and Scala, Anthony Sloane, Scala Days 2010

Variable uses and definitions

 val uses : Stm ==> Set[Var] =
 attr {
 case If (v, _, _) => Set (v)
 case While (v, _) => Set (v)
 case Assign (_, v) => Set (v)
 case Return (v) => Set (v)
 case _ => Set ()
 }

 val defines : Stm ==> Set[Var] =
 attr {
 case Assign (v, _) => Set (v)
 case _ => Set ()
 }

7

Lightweight Language Processing in Kiama and Scala, Anthony Sloane, Scala Days 2010

Control flow graph

8

y = v;

z = y;

x = v;

while (x)

{

 x = w;

 x = v;

}

return x;

Lightweight Language Processing in Kiama and Scala, Anthony Sloane, Scala Days 2010

Statement sequencing

 val following : Stm ==> Set[Stm] =
 attr {
 case s =>
 s.parent match {
 case t @ While (_, _) => Set (t)
 case b : Block if s isLast => b->following
 case Block (_) => Set (s.next)
 case _ => Set ()
 }
 }
 }

9

Lightweight Language Processing in Kiama and Scala, Anthony Sloane, Scala Days 2010

Control flow successor

 val succ : Stm ==> Set[Stm] =
 attr {
 case If (_, s1, s2) => Set (s1, s2)
 case t @ While (_, s) => t->following + s
 case Return (_) => Set ()
 case Block (s :: _) => Set (s)
 case s => s->following
 }

10

Lightweight Language Processing in Kiama and Scala, Anthony Sloane, Scala Days 2010

Dataflow in and out of statements

11

in(s) = uses(s) ∪ (out(s) \ defines(s))

out(s) =
�

x∈succ(s) in(x)

 val out : Stm ==> Set[Var] =
 circular (Set[Var]()) {
 case s => (s->succ) flatMap (in)
 }

 val in : Stm ==> Set[Var] =
 circular (Set[Var]()) {
 case s => uses (s) ++ (out (s) -- defines (s))
 }

Lightweight Language Processing in Kiama and Scala, Anthony Sloane, Scala Days 2010

Dataflow in and out of statements

12

in(s) = uses(s) ∪ (out(s) \ defines(s))

out(s) =
�

x∈succ(s) in(x)

Lightweight Language Processing in Kiama and Scala, Anthony Sloane, Scala Days 2010

Stratego

A powerful term rewriting language based on

primitive match, build, sequence and choice operators

rewrite rules built on the primitives

generic traversal operators to control application rules

an implementation by translation to C

Deployed for many program transformation problems including DSL
implementation, compiler optimisation, refactoring and web
application development.

http://strategoxt.org
13

Lightweight Language Processing in Kiama and Scala, Anthony Sloane, Scala Days 2010

Strategy-based Rewriting

14

Rewrite rule Pattern-matching function

Strategy Higher-order function

A transformation of a term that either

succeeds, producing a new term, or

fails

 abstract class Strategy extends (Term => Option[Term])

Lightweight Language Processing in Kiama and Scala, Anthony Sloane, Scala Days 2010

Applying Strategies

A strategy is a function, so it can be applied directly to a term.

val s : Strategy
val t : Term

s (t)

rewrite can be used to ignore failure.

def rewrite (s : => Strategy) (t : Term) : Term

rewrite (s) (t)

15

Lightweight Language Processing in Kiama and Scala, Anthony Sloane, Scala Days 2010

Basic Strategies

Always succeed with no change. val id : Strategy

 Always fail. val fail : Strategy

 Succeed if the current term is equal to t.

def term (t : Term) : Strategy

 Always succeed, changing the term to t.

 implicit def termToStrategy (t : Term) : Strategy

16

Lightweight Language Processing in Kiama and Scala, Anthony Sloane, Scala Days 2010

Combining Strategies

Methods of the Strategy class allow strategies to be combined:

 Generic traversal operators:

def all (s : => Strategy) : Strategy
def some (s : => Strategy) : Strategy
def one (s : => Strategy) : Strategy

17

p <* q sequence
p <+ q deterministic choice
p + q non-deterministic choice
p < q + r guarded choice

Lightweight Language Processing in Kiama and Scala, Anthony Sloane, Scala Days 2010

Dead code elimination

18

In Out
y = v; {v, w} {v, w, y}
z = y; {v, w, y} {v, w}
x = v; {v, w} {v, w, x}
while (x) {v, w, x} {v, w, x}
{

 x = w; {v, w} {v, w}
 x = v; {v, w} {v, w, x}
}

return x; {x} {}

Lightweight Language Processing in Kiama and Scala, Anthony Sloane, Scala Days 2010

Dead code elimination

19

rule {
case s @ Assign (v, _) if (! (s->out contains v)) =>
 Empty ()

}

Replace an assignment to a dead variable by an empty statement.

Lightweight Language Processing in Kiama and Scala, Anthony Sloane, Scala Days 2010

Dead code elimination

20

def alltd (s : => Strategy) : Strategy =
 s <+ all (alltd (s))

val elimDeadAssign =
 alltd (
 rule {
 case s @ Assign (v, _) if (! (s->out contains v)) =>
 Empty ()

 }
)

Replace all dead assignment statements in a program.

Lightweight Language Processing in Kiama and Scala, Anthony Sloane, Scala Days 2010

Dead code elimination

21

Remove empty statements and empty blocks.

rule {
case Empty () :: ss => ss
case Block (Nil) => Empty ()

}

Lightweight Language Processing in Kiama and Scala, Anthony Sloane, Scala Days 2010

Dead code elimination

22

 def bottomup (s : => Strategy) : Strategy =
 all (bottomup (s)) <* s

 def attempt (s : => Strategy) : Strategy =
 s <+ id

 val elimEmpties =
 bottomup (attempt (

rule {
case Empty () :: ss => ss
case Block (Nil) => Empty ()

}
))

Remove empties from the bottom of the tree upwards.

Lightweight Language Processing in Kiama and Scala, Anthony Sloane, Scala Days 2010

Dead code elimination

23

 def optimise (t : Stm) : Stm =
 rewrite (rules) (t)

 val rules = elimDeadAssign <* elimEmpties

Lightweight Language Processing in Kiama and Scala, Anthony Sloane, Scala Days 2010

Conclusion

So far, so good...

Attribution is around 600 lines of code, rewriting is around 1000 lines,
including comments and a largish strategy library.

All hail to Scala!

Ongoing activities:

Better types for strategies
Support for more language processing paradigms
Larger use cases, performance and scalability
Expressibility and semantics of paradigm combinations
Correctness of semantics of paradigm hosting and combinations

24

Lightweight Language Processing in Kiama and Scala, Anthony Sloane, Scala Days 2010

Further information

Binary and source downloads, examples, documentation,
papers, talks and mailing lists

http://kiama.googlecode.com

Next release: 1.0.0, when Scala 2.8 is released

Anthony.Sloane@mq.edu.au
http://www.comp.mq.edu.au/~asloane

Twitter: inkytonik

25

