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Embedded Language Processing

Formalisms and associated implementation techniques for analysing, 
translating and executing structured text.

Embedded as domain-specific languages in a general-purpose host 
language.

context-free grammars
attribute grammars
term rewriting systems
abstract state machines
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Attribute Grammars
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Context-free grammar Case class definitions

Attribute Function defined on nodes

Equations Pattern matching function definition

Evaluation mechanism Function call, attribute caching

An equational formalism suited to specifying static properties of tree 
and graph structures.
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Variable Liveness
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In Out
y = v {v, w} {v, w, y}
z = y {v, w, y} {v, w}
x = v {v, w} {v, w, x}
while (x) {v, w, x} {v, w, x}
{

  x = w {v, w} {v, w}
  x = v {v, w} {v, w, x}
}

return x {x} {}
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Abstract syntax

 case class Program (body : Stm) extends Attributable

 abstract class Stm extends Attributable

 case class Assign (left : Var, right : Var) extends Stm
 case class While (cond : Var, body : Stm) extends Stm
 case class If (cond : Var, tru : Stm, fls : Stm) extends Stm
 case class Block (stms : List[Stm]) extends Stm
 case class Return (ret : Var) extends Stm
 case class Empty () extends Stm

 type Var = String
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Variable uses and definitions

 val uses : Stm ==> Set[Var] =
   attr {
     case If (v, _, _)  => Set (v)
     case While (v, _)  => Set (v)
     case Assign (_, v) => Set (v)
     case Return (v)    => Set (v)
     case _             => Set ()
   }

 val defines : Stm ==> Set[Var] =
   attr {
     case Assign (v, _) => Set (v)
     case _             => Set ()
   }
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Control flow graph
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y = v;

z = y;

x = v;

while (x)

{

  x = w;

  x = v;

}

return x;
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Statement sequencing

   
 val following : Stm ==> Set[Stm] =
   attr {
     case s => 
       s.parent match {
         case t @ While (_, _)      => Set (t)                                          
         case b : Block if s isLast => b->following
         case Block (_)             => Set (s.next)
         case _                     => Set ()
       }
     }
   }
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Control flow successor

   
 val succ : Stm ==> Set[Stm] =
   attr {
     case If (_, s1, s2)   => Set (s1, s2)
     case t @ While (_, s) => t->following + s
     case Return (_)       => Set ()
     case Block (s :: _)   => Set (s)
     case s                => s->following
   }
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Dataflow in and out of statements
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in(s) = uses(s) ∪ (out(s) \ defines(s))

out(s) =
�

x∈succ(s) in(x)



 val out : Stm ==> Set[Var] =
   circular (Set[Var]()) {
     case s => (s->succ) flatMap (in) 
   } 

 val in : Stm ==> Set[Var] =
   circular (Set[Var]()) {
     case s => uses (s) ++ (out (s) -- defines (s))
   }
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Dataflow in and out of statements
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in(s) = uses(s) ∪ (out(s) \ defines(s))

out(s) =
�

x∈succ(s) in(x)
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Stratego

A powerful term rewriting language based on

primitive match, build, sequence and choice operators

rewrite rules built on the primitives

generic traversal operators to control application rules

an implementation by translation to C

Deployed for many program transformation problems including DSL 
implementation, compiler optimisation, refactoring and web 
application development.

http://strategoxt.org
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Strategy-based Rewriting
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Rewrite rule Pattern-matching function

Strategy Higher-order function

A transformation of a term that either

succeeds, producing a new term, or

fails

 abstract class Strategy extends (Term => Option[Term])
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Applying Strategies

A strategy is a function, so it can be applied directly to a term.

val s : Strategy
val t : Term

s (t)

rewrite can be used to ignore failure.

def rewrite (s : => Strategy) (t : Term) : Term

rewrite (s) (t)
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Basic Strategies

Always succeed with no change.      val id : Strategy

 Always fail.                                     val fail : Strategy  

  Succeed if the current term is equal to t.

def term (t : Term) : Strategy

 Always succeed, changing the term to t.

   implicit def termToStrategy (t : Term) : Strategy
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Combining Strategies

Methods of the Strategy class allow strategies to be combined:

 Generic traversal operators:

def all (s : => Strategy) : Strategy
def some (s : => Strategy) : Strategy
def one (s : => Strategy) : Strategy
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p <* q sequence
p <+ q deterministic choice
p + q non-deterministic choice
p < q + r guarded choice
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Dead code elimination
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In Out
y = v; {v, w} {v, w, y}
z = y; {v, w, y} {v, w}
x = v; {v, w} {v, w, x}
while (x) {v, w, x} {v, w, x}
{

  x = w; {v, w} {v, w}
  x = v; {v, w} {v, w, x}
}

return x; {x} {}
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Dead code elimination
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rule {
case s @ Assign (v, _) if (! (s->out contains v)) =>
  Empty ()

}

Replace an assignment to a dead variable by an empty statement.
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Dead code elimination
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def alltd (s : => Strategy) : Strategy =
  s <+ all (alltd (s)) 

val elimDeadAssign =
  alltd (
    rule {
    case s @ Assign (v, _) if (! (s->out contains v)) =>
      Empty ()

    }
  )

Replace all dead assignment statements in a program.
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Dead code elimination
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Remove empty statements and empty blocks.

rule {
case Empty () :: ss => ss
case Block (Nil)    => Empty ()

}
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Dead code elimination
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 def bottomup (s : => Strategy) : Strategy =
   all (bottomup (s)) <* s 

 def attempt (s : => Strategy) : Strategy =
   s <+ id

 val elimEmpties =
  bottomup (attempt (

rule {
case Empty () :: ss => ss
case Block (Nil)    => Empty ()

}
  ))

Remove empties from the bottom of the tree upwards.
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Dead code elimination
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 def optimise (t : Stm) : Stm =
   rewrite (rules) (t)
        
 val rules = elimDeadAssign <* elimEmpties
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Conclusion

So far, so good...

Attribution is around 600 lines of code, rewriting is around 1000 lines, 
including comments and a largish strategy library.

All hail to Scala!

Ongoing activities:

Better types for strategies
Support for more language processing paradigms
Larger use cases, performance and scalability
Expressibility and semantics of paradigm combinations
Correctness of semantics of paradigm hosting and combinations
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Further information

Binary and source downloads, examples, documentation,
papers, talks and mailing lists

http://kiama.googlecode.com

Next release: 1.0.0, when Scala 2.8 is released

Anthony.Sloane@mq.edu.au
http://www.comp.mq.edu.au/~asloane

Twitter: inkytonik
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